Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Small ; : e2400221, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38586921

RESUMO

Aqueous zinc-ion batteries (ZIBs) stand out as a promising next-generation electrochemical energy storage technology, offering notable advantages such as high specific capacity, enhanced safety, and cost-effectiveness. However, the application of aqueous electrolytes introduces challenges: Zn dendrite formation and parasitic reactions at the anode, as well as dissolution, electrostatic interaction, and by-product formation at the cathode. In addressing these electrode-centric problems, additive engineering has emerged as an effective strategy. This review delves into the latest advancements in electrolyte additives for ZIBs, emphasizing their role in resolving the existing issues. Key focus areas include improving morphology and reducing side reactions during battery cycling using synergistic effects of modulating anode interface regulation, zinc facet control, and restructuring of hydrogen bonds and solvation sheaths. Special attention is given to the efficacy of amino acids and zwitterions due to their multifunction to improve the cycling performance of batteries concerning cycle stability and lifespan. Additionally, the recent additive advancements are studied for low-temperature and extreme weather applications meticulously. This review concludes with a holistic look at the future of additive engineering, underscoring its critical role in advancing ZIB performance amidst the complexities and challenges of electrolyte additives.

2.
BMC Cancer ; 24(1): 345, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500077

RESUMO

BACKGROUND: Meningioma, the most prevalent intracranial tumor, possesses a significant propensity for malignant transformation. Circular RNAs (circ-RNAs), a class of non-coding RNAs, have emerged as crucial players in tumorigenesis. This study explores the functional relevance of hsa_circ_0004872, a specific circ-RNA, in the context of meningioma. METHODS: Molecular structure and stability of hsa_circ_0004872 were elucidated through PCR identification. Meningioma cell proliferation and apoptosis were assessed using the CCK-8 assay and flow cytometry, respectively. Gene and protein expression were analyzed via qRT-PCR and western blot. Molecular interactions were confirmed through dual-luciferase reporter gene and RIP assays. RESULTS: Hsa_circ_0004872, derived from exons 2 to 4 of the host gene MAPK1, demonstrated enhanced stability compared to its host MAPK1. Clinical data described that hsa_circ_0004872 was reduced in meningioma tissues and cell lines, and negatively correlated to poor survival rate of meningioma patients. Overexpression of hsa_circ_0004872 exhibited inhibitory effects on cell proliferation and promotion of apoptosis in vitro. Subsequent investigations unveiled a direct interaction between hsa_circ_0004872 and miR-190a-3p, leading to the activation of the PI3K/AKT signaling pathway through targeting PTEN. Notably, miR-190a-3p silence accelerated the apoptosis and proliferation inhibition of meningioma cells by inactivating PTEN/PI3K/AKT signaling, while miR-190a-3p overexpression showed an opposite effect, which greatly reversed the anti-tumor effects of hsa_circ_0004872 overexpression. CONCLUSION: In summary, our findings highlighted the intricate role of hsa_circ_0004872 in meningioma, shedding light on the regulatory mechanisms involving circ-RNAs in tumor progression. This positions hsa_circ_0004872 as a potential key regulatory factor in meningioma with implications for future therapeutic interventions.


Assuntos
Neoplasias Meníngeas , Meningioma , MicroRNAs , Humanos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Transformação Celular Neoplásica , Regulação Neoplásica da Expressão Gênica , Neoplasias Meníngeas/genética , Meningioma/genética , MicroRNAs/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , PTEN Fosfo-Hidrolase/genética , Transdução de Sinais/genética
3.
Gait Posture ; 103: 223-228, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37269620

RESUMO

BACKGROUND: Individuals increase walking speed by increasing their step-length, increasing their step-frequency, or both. During basic training military recruits are introduced to marching "in-step", and thus the requirement to walk at fixed speeds and step-lengths. The extent to which individuals are required to under- or over-stride will vary depending on their stature, and the stature of others in their section. The incidence of stress fractures in female recruits undergoing basic training is higher than that for their male counterparts. RESEARCH QUESTION: Therefore, the purpose of this study was to determine how joint kinematics and kinetics are affected by walking speed, step-length, and sex. METHODS: Thirty-seven (19 female) aerobically active non-injured individuals volunteered for this study. Synchronised three-dimensional kinematic and kinetic data were collected while participants walked overground at prescribed speeds. Audio and visual cues were used to control step-lengths. Linear mixed models were run to analyse the effects of speed, step-length condition, and sex on peak joint moments. RESULTS AND SIGNIFICANCE: The findings of this study showed that, in general, walking faster and over-striding predominantly increased peak joint moments, suggesting that over-striding is more likely to negatively affect injury risk than under-striding. This is especially important for individuals unaccustomed to over-striding as the cumulative effect of increased joint moments may affect a muscles capability to withstand the increased external forces associated with walking faster and with longer step-lengths, which could then lead to an increased risk of developing an injury.


Assuntos
Marcha , Velocidade de Caminhada , Humanos , Adulto , Masculino , Feminino , Velocidade de Caminhada/fisiologia , Marcha/fisiologia , Articulação do Joelho/fisiologia , Fenômenos Biomecânicos/fisiologia , Cinética , Caminhada/fisiologia
4.
ChemSusChem ; 16(19): e202300507, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37314096

RESUMO

Due to the "shuttle effect" and low conversion kinetics of polysulfides, the cycle stability of lithium sulfur (Li-S) battery is unsatisfactory, which hinders its practical application. The Mott-Schottky heterostructures for Li-S batteries not only provide more catalytic/adsorption active sites, but also facilitate electrons transport by a built-in electric field, which are both beneficial for polysulfides conversion and long-term cycle stability. Here, MXene@WS2 heterostructure was constructed by in-situ hydrothermal growth for separator modification. In-depth ultraviolet photoelectron spectroscopy and ultraviolet visible diffuse reflectance spectroscopy analysis reveals that there is an energy band difference between MXene and WS2 , confirming the heterostructure nature of MXene@WS2 . DFT calculations indicate that the Mott-Schottky MXene@WS2 heterostructure can effectively promote electron transfer, improve the multi-step cathodic reaction kinetics, and further enhance polysulfides conversion. The built-in electric field of the heterostructure plays an important role in reducing the energy barrier of polysulfides conversion. Thermodynamic studies reveal the best stability of MXene@WS2 during polysulfides adsorption. As a result, the Li-S battery with MXene@WS2 modified separator exhibits high specific capacity (1613.7 mAh g-1 at 0.1 C) and excellent cycling stability (2000 cycles with 0.0286 % decay per cycle at 2 C). Even at a high sulfur loading of 6.3 mg cm-2 , the specific capacity could be retained by 60.0 % after 240 cycles at 0.3 C. This work provides deep structural and thermodynamic insights into MXene@WS2 heterostructure and its promising prospect of application in high performance Li-S batteries.

5.
ChemSusChem ; 16(18): e202300765, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37291051

RESUMO

As electron transport layers (ETLs) in perovskite solar cells (PSCs), tin oxide (SnO2 ) possess high carrier mobilities with appropriate energy band alignment and high optical transmittance. Herein, SnO2 ETLs were fabricated by intermediate-controlled chemical bath deposition (IC-CBD) at ultralow temperature, where the chelating agent effectively altered the nucleation and growth process. Compared with conventional CBD, SnO2 ETLs fabricated by IC-CBD had lower defects, smooth surface, good crystallinity, and remarkable interfacial contact with perovskite, resulting in good quality of perovskite, high photovoltaic performance (23.17 %), and enhanced stability of devices.

6.
Small ; 19(33): e2302170, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37162444

RESUMO

Designing electrocatalysts with strong electronic metal-support interaction can effectively regulate the electronic properties of metal active centers, therefore maximizing the catalytic performance. As a proof of concept, heteroatoms doped carbon with CoPt alloy and isolated Co single atoms (CoPtCoSA@NSC) are synthesized using CoPt bimetallic metal-organic framework as the precursor in this work. The existence of CoSA on the carbon substrate leads to more electron transfer between CoPt and the support, and appropriate upward shift of the d band center of the catalysts, which can effectively reduce the reaction barrier of rate determine step and boost the catalytic performance of CoPt alloy. The enhanced catalytic activity and stability of CoPtCoSA@NSC are demonstrated experimentally. Remarkably, the overpotential for hydrogen evolution reaction is only 23 mV at 10 mA cm-2 and the half-wave potential for oxygen reduction reaction is 0.90 V, both exceeding the commercial Pt/C benchmark. In addition, CoPtCoSA@NSC also exhibits great potential as a cathode electrocatalyst for Zn-air battery, in terms of large open circuit potential of 1.53 V, high power density of 184 mW cm-2 , as well as superior cycling stability. This work provides a novel strategy for regulating the electronic structure and catalytic performance of alloy based electrocatalysts.

7.
Front Immunol ; 14: 1082974, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36814929

RESUMO

Background: Cuproptosis, a newly reported type of programmed cell death, takes part in the regulation of tumor progression, treatment response, and prognosis. But the specific effect of cuproptosis-related genes (CRGs) on glioblastoma (GBM) is still unclear. Methods: The transcriptome data and corresponding clinical data of GBM samples were downloaded from the TCGA and GEO databases. R software and R packages were used to perform statistical analysis, consensus cluster analysis, survival analysis, Cox regression analysis, Lasso regression analysis, and tumor microenvironment analysis. The mRNA and protein expression levels of model-related genes were detected by RT-qPCR and Western blot assays, respectively. Results: The expression profile of CRGs in 209 GBM samples from two separate datasets was obtained. Two cuproptosis subtypes, CRGcluster A and CRGcluster B, were identified by consensus cluster analysis. There were apparent differences in prognosis, tumor microenvironment, and immune checkpoint expression levels between the two subtypes, and there were 79 prognostic differentially expressed genes (DEGs). According to the prognostic DEGs, two gene subtypes, geneCluster A and geneCluster B, were identified, and a prognostic risk score model was constructed and validated. This model consists of five prognostic DEGs, including PDIA4, DUSP6, PTPRN, PILRB, and CBLN1. Ultimately, to improve the applicability of the model, a nomogram was established. Patients with GBM in the low-risk cluster have a higher mutation burden and predict a longer OS than in the high-risk group. Moreover, the risk score was related to drug sensitivity and negatively correlated with the CSC index. Conclusion: We successfully constructed a cuproptosis-related prognostic model, which can independently predict the prognosis of GBM patients. These results further complement the understanding of cuproptosis and provide new theoretical support for developing a more effective treatment strategy.


Assuntos
Glioblastoma , Humanos , Prognóstico , Nomogramas , Apoptose , Western Blotting , Microambiente Tumoral
8.
Phys Ther Sport ; 59: 73-79, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36525739

RESUMO

BACKGROUND: Patellofemoral pain (PFP) is a major source of knee pain. Identifying who may develop PFP is of paramount importance. PURPOSE: To assess whether Frontal plane projection angles (FPPA) and hand held dynamometry (HHD) strength measures can predict development of PFP. STUDY DESIGN: Prospective evaluation of individuals undertaking a military training programme. METHODS: Male military recruits were enrolled and prospectively followed up from enrolment to completion of 12-weeks training. Lower limb kinematics (FPPA, Q-angle, hip adduction angle, knee flexion, ankle dorsiflexion, and rearfoot eversion angle) measured during running, single leg squatting (SLS), and single leg landing (SLL) and isometric muscle strength of hip abductors and knee extensors. RESULTS: Body mass, hip abductor muscle strength, Q-angle during SLS and SLL, FPPA during SLL all significantly different between the PFP and non-injured groups and predicted PFP, highest predictor variable was FPPA during SLL (Odds Ratio = 1.13, P = 0.01). A FPPA≥5.2° during SLL predicting PFP with a sensitivity of 70% and a specificity of 70%. CONCLUSION: Participants who developed PFP had a number of physical factors significantly different than the non-injured group, most predictive was a larger FPPA during SLL, with angles greater than 5.2° associated with a 2.2x greater risk. CLINICAL RELEVANCE: Assessing FPPA during SLL could be used to determine who was predisposed to PFP.


Assuntos
Militares , Síndrome da Dor Patelofemoral , Humanos , Masculino , Estudos Prospectivos , Articulação do Joelho/fisiologia , Joelho , Fenômenos Biomecânicos/fisiologia
9.
J Colloid Interface Sci ; 631(Pt B): 173-181, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36401925

RESUMO

Enhancing the electrocatalytic oxygen evolution reaction (OER) performance is essential to realize practical energy-saving water electrolysis and CO2 electroreduction. Herein, we report a bimetallic co-doping engineering to design and fabricate nickel-cobalt-iron collaborative oxy-hydroxide on nickel foam that labeled as NiCoFeOxHy-NF. As expected, NiCoFeOxHy-NF exhibits an outstanding OER activity with current density of 10 mA cm-2 at 194 mV, Tafel slope of 53 mV dec-1, along with the robust long-term stability, which is significantly better than bimetallic NiCo and NiFe combinations. Comprehensive computational simulations and characterizations jointly unveil that the twisted ligand environment induced by heteroatoms ensures the balance strength between the metal-oxygen hybrid orbital states and the oxidized intermediates adsorption, thus lowering the oxygen cycling energy barriers for overcoming the sluggish OER kinetics. Moreover, a novel phase transition behavior is monitored by in-situ Raman spectra under OER operating conditions, which facilitates electron-mass transfer as well as boosts the exposure of activity sites. For practical applications, Ni2P-NF || NiCoFeOxHy-NF and Cu || NiCoFeOxHy-NF couples were constructed to realize high-efficiency water electrolysis and CO2 electrochemical reduction for the production of valuable H2 and C2H4, respectively. This work elucidates a novel mechanism by which bimetallic co-doping improves the electrocatalytic OER activity of nickel-based hydroxides.

10.
Molecules ; 29(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38202585

RESUMO

The efficacy of lithium-sulfur (Li-S) batteries crucially hinges on the sulfur immobilization process, representing a pivotal avenue for bolstering their operational efficiency and durability. This dissertation primarily tackles the formidable challenge posed by the high solubility of polysulfides in electrolyte solutions. Quantum chemical computations were leveraged to scrutinize the interactions of MXene materials, graphene (Gr) oxide, and ionic liquids with polysulfides, yielding pivotal binding energy metrics. Comparative assessments were conducted with the objective of pinpointing MXene materials, with a specific focus on d-Ti3C2 materials, evincing augmented binding energies with polysulfides and ionic liquids demonstrating diminished binding energies. Moreover, a diverse array of Gr oxide materials was evaluated for their adsorption capabilities. Scrutiny of the computational outcomes unveiled an augmentation in the solubility of selectively screened d-Ti3C2 MXene and ionic liquids-vis à vis one or more of the five polysulfides. Therefore, the analysis encompasses an in-depth comparative assessment of the stability of polysulfide adsorption by d-Ti3C2 MXene materials, Gr oxide materials, and ionic liquids across diverse ranges.

11.
ACS Appl Mater Interfaces ; 14(49): 54758-54768, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36454203

RESUMO

Enhancing the intrinsic activity and modulating the electrode-electrolyte interface microenvironment of nickel-based candidates are essential for breaking through the sluggish kinetics limitation of the oxygen evolution reaction (OER). Herein, a ternary nickel-cobalt-iron solid solution with delicate hollow nanoarrays architecture (labeled as NiCoFe-NTs) was designed and fabricated via a ZnO-templated electrodeposition strategy. Owing to the synergistic nanostructure and composition feature, NiCoFe-NT presents desirable alkaline OER performance, with a η10 and η500 of 187 and 310 mV, respectively, along with favorable long-term durability. In-depth analyses identify the heterogeneous nickel-based (oxy)hydroxide species derived from the oxidative reconstruction acting as an active contributor for oxygen evolution. Impressively, the regulatory mechanism of the catalytic performance by a rationally designed nanostructure was elucidated by compressive analyses; that is, the faster gas release processes induced by nanotube arrays can modulate the heterogeneous interface states during OER, which effectively facilitates the electrochemical charge-mass transfer to promote the reaction kinetics. To assess the practical feasibility, an alkaline water electrolyzer and a CO2 electrochemical reduction flow cell were constructed by coupling the anodic NiCoFe-NTs and cathodic nickel phosphides (Ni2P-NF) and metallic Cu electrocatalysts, respectively, both of which achieved high-efficiency operation.

12.
J Healthc Eng ; 2022: 4232990, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36406334

RESUMO

Backward walking (BW) has been recommended as a rehabilitation intervention to prevent, manage, or improve diseases. However, previous studies showed that BW significantly increased the first vertical ground reaction force (GRF) during gait, which might lead to higher loading at the knee. Published reports have not examined the effects of BW on medial compartment knee loading. The objective of this study was to investigate the effects of BW on external knee adduction moment (EKAM). Twenty-seven healthy adults participated in the present study. A sixteen-camera three-dimensional VICON gait analysis system, with two force platforms, was used to collect the EKAM, KAAI, and other biomechanical data during BW and forward walking (FW). The first (P < 0.001) and second (P < 0.001) EKAM peaks and KAAI (P=0.02) were significantly decreased during BW when compared with FW. The BW significantly decreased the lever arm length at the first EKAM peak (P=0.02) when compared with FW. In conclusion, BW was found to be a useful strategy for reducing the medial compartment knee loading even though the first peak ground reaction force was significantly increased.


Assuntos
Articulação do Joelho , Joelho , Humanos , Adulto , Fenômenos Biomecânicos , Marcha , Caminhada
13.
Nanoscale ; 14(38): 14297-14304, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36148517

RESUMO

The development of non-precious metal electrocatalysts with remarkable activity is a major objective for achieving high-efficiency hydrogen generation. Here, a trimetallic electrocatalyst with a dendritic nanostructure, which is denoted as NiMoCu-NF, was fabricated on nickel foam via a gas-template electrodeposition strategy. By virtue of the metallic doping and structural optimization, NiMoCu-NF exhibits superior HER electrocatalytic activity with an overpotential of 52 mV at 10 mA cm-2. Additionally, the NiMoCu-NF-derived nickel-based (oxy)hydroxide species in the oxidation operating state deliver considerable electrocatalytic urea oxidation reaction (UOR) performance to match the efficient H2 generation, with a low voltage of 1.54 V to realize overall electrolysis at 50 mA cm-2. Impressively, combined experimental and simulation analysis demonstrate that the NiMoCu-NF with a favorable 3D nanostructure feature effectively regulates the heterogeneous interface states, inducing a "Gas Microfluidic Pumping" (GMP) effect that improved electron-mass transfer properties to accelerate the electrocatalytic reaction kinetics of either the HER or UOR.

14.
Front Immunol ; 13: 915126, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935982

RESUMO

Background and purpose: Gadolinium enhancement on high-resolution vessel wall imaging (HR-VWI) is an imaging marker of intracranial atherosclerotic stenosis (ICAS) plaque instability. This study aimed to evaluate the relationships between hematological inflammatory indicators and the enhancement of ICAS plaques and to search for hematological indicators that can predict ICAS plaque instability. Methods: Consecutive adult patients diagnosed with ICAS from April 2018 to December 2021 were recruited retrospectively, and every patient underwent HR-VWI. Plaque enhancement was measured qualitatively and quantitatively. The plaque-to-pituitary stalk contrast ratio (CR) indicated the degree of plaque enhancement. Clinical and laboratory data, including the lymphocyte-to-monocyte ratio (LMR), neutrophil-to-lymphocyte ratio (NLR), and systemic immune inflammation index (SII), were recorded. The hematological inflammatory indicators were compared between ICAS patients with and without plaque enhancement and between patients with and without symptomatic plaque. The hematological inflammatory indicators and the CR were compared using linear regression. Furthermore, receiver operating characteristic curve analysis was performed to assess the discriminative abilities of the inflammatory indicators to predict plaque instability. Results: Fifty-nine patients were included. The NLR, SII and LMR were significantly correlated with plaque enhancement. The LMR was independently associated with plaque enhancement, and a linear negative correlation was observed between the LMR and CR (R = 0.716, P < 0.001). The NLR, LMR, plaque enhancement and CR were significantly associated with symptomatic ICAS, and the LMR and plaque enhancement were independent risk factors for symptomatic ICAS. The optimal cutoff value of the admission LMR to distinguish symptomatic plaque from asymptomatic plaque was 4.0 (80.0% sensitivity and 70.6% specificity). Conclusion: The LMR was independently associated with ICAS plaque enhancement and showed a linear negative correlation with CR. The LMR and plaque enhancement were independent risk factors for symptomatic ICAS. An LMR ≤ 4.0 may predict ICAS plaque instability.


Assuntos
Arteriosclerose Intracraniana , Placa Aterosclerótica , Adulto , Constrição Patológica , Meios de Contraste , Gadolínio , Humanos , Arteriosclerose Intracraniana/complicações , Linfócitos , Monócitos , Estudos Retrospectivos
15.
Exp Neurol ; 357: 114182, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35901975

RESUMO

BACKGROUND: Traumatic brain injury (TBI) is one of the major contributors to disability and death worldwide. Glutamate-mediated excitotoxicity, one of the secondary injuries occurring after TBI, leads to extreme neuronal apoptosis, and can be a potential target for intervention. Bone marrow mesenchymal stem cells-derived exosomes (BMSCs-Exos) have demonstrated neuroprotective effects on TBI. However, their precise role and the underlying mechanism by which they regulate glutamate-mediated excitotoxicity have not yet been determined. Therefore, this study aimed to determine whether BMSCs-Exos alleviate glutamate excitotoxicity post-TBI and their associated mechanism. METHODS: BMSCs-Exos were extracted from the BMSCs incubation medium and identified by transmission electron microscopy, nanoparticle trafficking analysis, and western blotting. The neuroprotective effects of BMSCs-Exos on glutamate excitotoxicity were investigated in the glutamate-mediated excitotoxicity neuronal cell model and the TBI rat model (TBI induced by controlled cortical impact) using western blotting and TUNEL assay. Cortical lesion samples were collected post-TBI on day-1 and day-14 to study histology. In addition, cortical lesion volume on days 1, 3 and 7 following TBI was determined using T2-weighted magnetic resonance imaging (MRI), and cognitive function was assessed at 4 weeks following TBI using the Morris water maze (MWM) test. RESULTS: BMSCs-Exos were observed to be spherical with a mean diameter of 109.9 nm, and expressed exosomal markers CD9, CD81 and TSG101. BMSCs-Exos were efficiently endocytosed by astrocytes after co-incubation for 24 h. In vitro studies revealed that 125 µM of glutamate significantly induced neuronal apoptosis, which was attenuated by BMSCs-Exos in astrocyte-neuron co-cultures. This attenuation was mediated by the upregulation of glutamate transporter-1 (GLT-1) level and the downregulation of p-p38 MAPK level in astrocytes. Similar results were obtained in vivo, wherein we verified that PKH67-labeled BMSCs-Exos administered intravenously could reach the perilesional cortex crossing the blood-brain barrier and significantly reduce glutamate levels in the perilesional cortex of the TBI rat, accompanied by increased GLT-1 level and downregulation in p-p38 MAPK level. Additionally, western blotting and TUNEL staining also revealed that BMSCs-Exos significantly downregulated the expression of pro-apoptosis markers, including cleaved caspase-3 and cleaved caspase-9, and attenuated neuronal apoptosis following TBI. Immunohistochemical analysis and Nissl staining showed that BMSCs-Exos significantly increased GLT-1-positive cells, and the number of apoptotic neurons decreased in the perilesional cortex. Moreover, MRI and MWM results revealed that BMSCs-Exos significantly minimized cortical lesion volume and ameliorated cognitive function after TBI. The underlying neuroprotective mechanism of BMSCs-Exos may be due to an increase in GLT-1 level in astrocytes by blocking the p38 MAPK signaling pathway. CONCLUSION: Taken together, our findings demonstrate that the implementation of BMSCs-Exos may be an effective prospective therapy for attenuating post-TBI neurological damage.


Assuntos
Lesões Encefálicas Traumáticas , Exossomos , Células-Tronco Mesenquimais , Fármacos Neuroprotetores , Animais , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/terapia , Exossomos/metabolismo , Ácido Glutâmico/metabolismo , Células-Tronco Mesenquimais/metabolismo , Fármacos Neuroprotetores/metabolismo , Ratos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
16.
J Chromatogr A ; 1673: 463101, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35525193

RESUMO

In the present work, a type of biochar materials derived from carbonizing peanut shells were obtained and employed as the adsorbents of pipette-tip solid-phase extraction (PT-SPE) for the enrichment and determination of six endocrine-disrupting phenols (EDPs) in combination with high-performance liquid chromatography equipped with ultraviolet detector (HPLC-UV). Abundant aliphatic and aromatic carbon structures and functional groups from polar heteroatoms (N, O, S) were distributed in the low-cost and eco-friendly peanut shells-derived biochar materials and were favorable for the enrichment of target EDPs. Moreover, the theoretical calculation based on density functional theory (DFT) proved that the effective enrichment of EDPs in aqueous samples benefited from the effective adsorption on the peanut shells-derived biochar materials. The experimental factors influencing the extraction efficiency were investigated, including adsorbent amount, aspirating/dispensing cycles, the type of elution solvent and elution times, salt addition, sample solution pH and type and volume of washing solvent. Under the optimal conditions, the proposed PT-SPE method exhibited good linear relationship (R2 > 0.993) in the range of 0.5-400 µg/L and low limits of detections (LODs) from 0.25 to 2.5 µg/L, as well as good precision and accuracy with relative standard deviations (RSDs) of 0.3%-13.2% and recoveries of 83.5%-117.1%. Finally, the biochars-based miniaturized pretreatment method was employed for the determination of six EDPs in bottled water, milk, tea beverage and disposal plastic bag soaked solution with recoveries from 77.5% to 116.5%.


Assuntos
Leite , Fenóis , Animais , Arachis , Carvão Vegetal , Cromatografia Líquida de Alta Pressão/métodos , Leite/química , Fenóis/análise , Extração em Fase Sólida/métodos , Solventes/análise , Água/análise
17.
Chem Commun (Camb) ; 58(47): 6749-6752, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35608108

RESUMO

The elimination of the electron transport layer (ETL) to fabricate ETL-free perovskite solar cells (PSCs) could save manufacturing cost and time. However, the direct contact of the perovskite and transparent conducting oxide (TCO) electrodes results in mismatched energy level alignment and current leakage. Therefore, ETL-free PSCs suffer from unsatisfactory photovoltaic performance. Herein, a special perovskite material with a cascaded band gap, called gradient homojunction perovskite (GHJP), is designed and synthesized by a large cation-assisted method. The inherent nature of GHJP was the type-II cascaded energy level alignment, which could block holes during the electron collection. This facilitated the dissociation of the excitons in the GHJP. Due to the excellent properties, ETL-free PSCs based on GHJP obtained 20.55% PCE, which was over 90% higher than that of ETL-free PSCs based on the control perovskite material.

18.
Front Surg ; 9: 783885, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35433811

RESUMO

Purpose: The purpose of the current study was to compare the effects of local anesthesia (LA) and general anesthesia (GA) on the surgical process and postoperative recovery of patients with unilateral chronic subdural hematoma (CSDH). Patients and Methods: A retrospective cohort study was conducted on patients with unilateral CSDH who underwent burr hole surgery between the years 2013 and 2018. Patients who received local anesthesia were allocated to the LA group, and the patients who received general anesthesia were allocated to the GA group. The clinical data, postoperative complication, length of stay, and hospitalization cost of these two groups were compared and analyzed. Results: Data from 105 patients was collected for this study. Fifty one patients were assigned to the LA group and 54 to GA group. The duration of anesthesia and operation of the LA group was 37.71 (10.55) min; while for the GA group the duration was 56.04 (8.37) min (p < 0.001). The time from operation to discharge in GA group was greatly longer than that in LA group [(8.51 (1.49) days vs. 10.46 (2.34) days, respectively; p < 0.001]. Hospitalization cost for LA group was 2,721.54 (504.66) USD, which was significantly lesser than that for GA patients [3,314.82 (493.52) USD; p < 0.001]. The total number of complications in LA patients was less than that in GA patients [6 vs. 29 cases, respectively; p < 0.001]. The number of patients with residual hematoma in the LA group was

19.
Small ; 18(21): e2200656, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35466571

RESUMO

The insufficient contact between two phases in the heterostructure weakens the coupling interaction effect, which makes it difficult to effectively improve the electrochemical performance. Herein, a Co-carbonate hydroxide@ Ni-metal organic frameworks (Co-CH@Ni-MOFs) composite with super uniform core-shell heterostructure is fabricated by adopting 1D Co-CH nanowires as structuredirecting agents to induce the coating of Ni-MOFs. Both experimental and theoretical calculation results demonstrate that the heterostructure plays a vital role in the high performance of the as-prepared materials. On the one hand, the construction of super uniform core-shell heterostructure can create a large number of interfacial active sites and take advantages of the electrochemical characteristics of each component. On the other hand, the heterostructure can increase the adsorption energy of OH- ions and promote the electrochemical activity for improving the reversible redox reaction kinetics. Based on the aforementioned advantages, the as-fabricated Co-CH@Ni-MOFs electrode exhibits a high specific capacity of 173.1 mAh g-1 (1246 F g-1 ) at 1 A g-1 , an ultrahigh rate capability of 70.3% at 150 A g-1 and excellent cycling stability with 90.1% capacity retention after 10 000 cycles at 10 A g-1 . This study may offer a versatile design for fabricating a MOFs-based heterostructure as energy storage electrodes.

20.
Biomed Res Int ; 2022: 7590997, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35299889

RESUMO

Objective: Polypyrimidine tract-binding protein 1 (PTBP1) is an RNA-binding protein, which plays a role in pre-mRNA splicing and in the regulation of alternative splicing events. However, little was known about the correlation between PTBP1 and glioma and its prognostic significance in glioma patients. Our aim was to investigate the expression, functional role, and prognostic value of PTBP1 in glioma. Methods: We explored the expression of PTBP1 protein using immunohistochemistry in 150 adult malignant glioma tissues and 20 normal brain tissues and evaluated its association with clinicopathological parameters by chi-square test. Kaplan-Meier method was used to evaluate the prognostic effect of PTBP1 in glioma. Univariate/multivariate Cox analyses were used to identify independent prognostic factors. Transcriptional regulation network was constructed based on differentially expressed genes (DEGs) of PTBP1 from TCGA/CGGA database. GO and KEGG enrichment analyses were used to explore the function and pathways of DEGs. Results: Out of the 150 malignant glioma tissues (60 LGG and 90 GBMs) and 20 normal brain tissues in our cohort, PTBP1 protein was high expressed in glioma tissues (79/150, 52.7%), but no expression was detected in normal brain tissues (0/20, 0%). The expression of PTBP1 was significantly higher in GBMs (P < 0.001). More than half of GBMs (62/90, 68.9%) were PTBP1 high expression. Chi-square test showed that the expression of PTBP1 was correlated with patient age, WHO grade, Ki-67 index, and IDH status. High expression of PTBP1 was significantly associated with poor prognosis in glioma, and it was an independent risk factor in glioma patients. Furthermore, we shed light on the underlying mechanism of PTBP1 by constructing a miR-218-TCF3-PTBP1 transcriptional network in glioma. Conclusion: PTBP1 was high expressed in glioma, and it significantly correlated with poor prognosis, suggesting a potential therapeutic target for glioma, particularly for GBM.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Glioma/genética , Ribonucleoproteínas Nucleares Heterogêneas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Adulto , Neoplasias Encefálicas/patologia , Feminino , Glioma/patologia , Humanos , Masculino , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...